空間散乱X線測定による実効エネルギー変換係数の算出

東北大学 大学院医学系研究科 保健学専攻 ○薩來 康 (Satsurai Ko) 石井 浩生 東北大学 大学院医学系研究科 保健学専攻 東北大学 災害科学国際研究所 災害放射線医学 千田 浩一 稲葉 洋平 仙台厚生病院 放射線科 芳賀 喜裕 加賀 勇治

【目的】

放射線防護具の評価方法は、線量・線量率測定とエネルギー測定の2通りの方法がある。多くの研究では、 線量測定を行い、X線透過率から対象となる防護具の遮蔽能力を評価する。一方、エネルギー測定による評価 はあまり行われていないが、実効エネルギーを取得することにより、鉛当量厚の算出が可能となる。よって、適切 に防護具の評価を行うためには、放射線の実効エネルギーを得ることも重要となる。

実効エネルギーはX線スペクトルを取得可能な半導体検出器(本研究ではCdTe半導体検出器を利用)から 算出可能であるが、煩雑な手動計算が必要であるため、従来は実効エネルギーを短時間で得ることは困難であ った。我々は、容易にエネルギー測定が可能なサーベイメータであるRaySafeX2を使用する機会を得た。しかし、 X2サーベイメータの測定値は平均エネルギーであり、実効エネルギーを取得することは不可能である。よって、 本研究は、X2サーベイメータで得られる平均エネルギーから実効エネルギーへの変換係数を算出することを目 的とした。今回は、異なる装置間の変換係数を比較評価するために、X線透視装置とMDCTを用いた。また、上 位の目的を達成するために、CdTe半導体検出器の測定値を基準としてX2サーベイメータの平均エネルギー測 定精度を評価した。

X2サーベイメータの概要を下記に示す(Fig.1)。

Fig.1 RaySafeX2 (Unfors RaySafe)

【方法】

人体ファントムから生じる空間散乱X線をX2サーベイメータ及びCdTe半導体検出器で3回測定した。幾何学的配置は、X線透視装置では90°散乱X線、MDCTでは45°散乱X線を検出可能な位置に測定器を設置した。X2 サーベイメータでは平均エネルギー値、CdTe半導体検出器では平均エネルギー値及び実効エネルギーを測 定値として取得した。平均エネルギー値の比較評価は、各測定器の平均測定値を用いた。実効エネルギー変 換係数は、各測定器の平均測定値を比較し、回帰分析により変換係数を算出した。

【使用機器】

[・]半導体式サーベイメータ:RaySafeX2 (Unfors RaySafe)

[・]CdTe半導体検出器:EMF123型X線スペクトロメータ(EMFジャパン)

•X線透視装置:DHF-155HⅡ(日立)

•MDCT: Aquilion 64 (東芝、64列)

・CT撮影用人体ファントム PBU-60 (京都科学)

【結果】

X2サーベイメータの平均エネルギー測定精度は、CdTe半導体検出器と比較してX線透視装置では11%、 MDCTでは7%過小評価となった。

実効エネルギー変換係数を示す回帰直線のR²値は、X線透視装置において0.987となり、MDCTにおいて 0.993となった。

2種類のX線発生装置から得られた回帰直線を比較した結果、2本の直線の傾きには有意差が認められた。

【考察】

平均エネルギー値に差が生じた主な原因は、各測定器の方向依存性の違いであると考える。CdTe半導体検 出器はコリメータを使用しているため、90°散乱X線のみをピンポイントに検出するが、X2サーベイメータは散乱X 線の空間的な検出可能範囲が広い。X2サーベイメータは低エネルギー領域の散乱X線も検出したため、平均 エネルギー値が低く表示されたと考える。

X線発生装置が異なる場合、同一管電圧でも装置毎にX線スペクトルが異なるため、実効エネルギー変換係数が変化したと考える。

【まとめ】

X2サーベイメータの平均エネルギー測定精度は、CdTe半導体検出器と比較してやや過小評価となった。 実効エネルギー変換係数を算出することにより、実効エネルギーを容易に取得可能となった。 X線発生装置毎に実効エネルギー変換係数を算出する必要がある。

【参考文献·図書】

- Chida K, Yoshiaki M, Katahira Y et al. : Evaluation of Additional Lead Shielding in Protecting the Physician from Radiation during Cardiac Interventional Procedures, Japanese Journal of Radiological Technology, 61(12):1632-1637(2005).
- Domienik J, Bissinger A, Grabowicz W et al. : The impact of various protective tools on the dose reduction in the eye lens in an interventional cardiology-clinical study, Journal of Radiological Protection, 36(2):309-318 (2016).
- 3) Marshall NW, Faulkner K, Warren H, et al. : Measured scattered x-ray energy spectra for simulated irradiation geometries in diagnostic radiology, medical physics, 23(7), 1271-1276 (1996).
- 4) Kyle Jones, Alexander S. Pasciak, Louis K. Wagner : Sensitivity of the diagnostic radiological index of protection to procedural factors in fluoroscopy, medical physics, 43(7), 4133-4141 (2016).
- 5) 石井 浩生, 薩來 康, 上杉 直人, 他:新型半導体式サーベイメータの基本特性に関する検討, 日本放 射線安全管理学会誌, 17(1), 2-8 (2018).
- 6) 石井 浩生, 薩來 康, 上杉 直人, 他:二種類の異なる半導体式サーベイセンサの基本特性比較, 東北 大学医学部保健学科紀要, 27(1), 43-50 (2018)
- 7) 薩來 康, 石井 浩生, 芳賀 喜裕, 他:半導体式サーベイメータの散乱X線平均エネルギー測定精度の 基礎検討, 日本放射線安全管理学会誌 (2018), in press.
- 8) ICRU Publication 74 : Conversion Coefficients for use in Radiological Protection Against External Radiation, Annals of the ICRP, 26 (3-4) (1996).
- 9) ICRP Publication 117 : Radiological Protection in Fluoroscopically Guided Procedures outside the Imaging Department, Annals of the ICRP, 40(6) (2010).