強度変調放射線治療の線量検証における Portal Dosimetry の有用性および従来法との比較

青森県立中央病院 腫瘍放射線科 〇浅利 一哉(Asari Kazuya)

佐藤 和彦 福士 英人 工藤 由衣 江良 和樹 澤頭 大幹 洞内 美明

医療法人雄心会 青森新都市病院

高精度放射線治療センター 医学物理室 成田 雄一郎

【目的】

強度変調放射線治療(IMRT)の線量検証は、電離箱線量計を用いた絶対線量検証とフィルムを用いた線量 分布検証である従来法が基本となっている。従来法は測定に時間を要し、フィルムの解析に関しては時間をお かなければならず、フィルムはコストがかかる。そこで、リニアック付属装置であるEPIDを用いたIMRT線量検証で あるPortal Dosimetryが実施可能かを検証するために、種々の項目について解析し、また従来法との比較を行っ た。

【使用機器】

・リニアック : Clinac iX(X線エネルギー6,10MV、EPID搭載、Varian)

•療計画装置 : Eclipse Ver13(Varian)

【方法】

線量検証済みの前立腺20症例、頭頸部18症例、胸部2症例のIMRTプラン(照射術式は全てVMAT2門照射) からPortal Dosimetryプランによる線量検証を実施し、結果を解析した。また従来法とPortal Dosimetryの比較も行った。解析項目は以下に示す。

- 1.Portal Dosimetryでの解析前にField1,2でAuto Alignmentを実施し、自動でのAlignment調整を行い、算出されたX.Y方向の平均値、標準偏差を求めた。
- 2. Area Gamma(γ値が許容値より小さい割合、3%/1mm)、Average Dose Deference(平均DD)のAlignment調整あり・なしでの結果を対応のあるt検定で比較した。
- 3.従来法の電離箱線量計での絶対線量測定の全門線量誤差(%)と、Portal Dosimetryでの全門線量誤差(%、Alignment調整あり)をWilcoxonの符号付順位検定で比較した。Portal Dosimetryは治療計画装置でのEPID中心線量と、測定での中心線量を計測ツールで計測し、両計測値から誤差を求めた。
- 4.従来法のガフクロミックフィルムでの線量分布検証(3%/3mm)と、Portal Dosimetry(3%/1mm、Alignment調整あり)の結果を対応のあるt検定で比較した。Portal DosimetryはField1,2の結果の平均値を用いている。

【結果】

1の結果をTable 1に示す。前立腺、頭頸部・胸部でのX,Y方向の両方においてシフト量が1 mm以下であり、標準偏差からシフト方向も同じ方向であった。

2の結果をTable 2,3に示す。Area Gammaではすべてにおいて有意差があり、Alignment調整では95%以上の結果となった。Average DDではすべてにおいて有意差があり、Alignment調整ありのほうの結果が良かった。

3の結果をTable 4に示す。頭頸部・胸部で有意差があった。

4の結果をTable 5に示す。前立腺で有意差があった。

Table 1 Auto Alignment 調整の結果

		Fie	eld 1		Field 2				
	X		Y		X		Y		
部位	平均値	標準	平均值	標準	平均值	標準	平均値	標準	
	(cm)	偏差	(cm)	偏差	(cm)	偏差	(cm)	偏差	
前立腺	-0.02	0.01	-0.09	0.01	-0.02	0.01	-0.09	0.01	
頭頸部 胸部	0.09	0.01	0.01	0.02	0.07	0.03	0.01	0.03	

Table 2 Area Gamma Alignment 調整あり・なしの結果

19 Table 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
	3 % 1 mm								
部位									
	な	し	あ						
	平均値	標準	平均値	標準	判定				
	(%)	偏差	(%)	偏差					
前立腺	92.4	1.8	97.4	1.2	P < 0.05				
頭頸部 胸部	92.0	4.0	95.0	4.0	P < 0.05				

Table 3 Average DD Alignment 調整あり・なしの結果

N. 132.00 - 110.11										
	な	し	ð							
部位	平均値	標準	平均値	標準	判定					
	(CU)	偏差	(CU)	偏差						
前立腺	4.8	0.5	2.8	0.3	P < 0.05					
頭頸部 胸部	2.8	0.6	2.2	0.5	P < 0.05					

Table 4 線量誤差(%)結果の比較

Table 5 線量分布検証結果の比較

部位	電離箱線量計		Portal Do	osimetry			ガフクロミック		Portal Dosimetry		判定
			Alignment調整		判定	部位	フィルム		Alignment調整		
			あり						あり		
	平均値	標準	平均値	標準			平均値	標準	平均値	標準	
	(%)	偏差	(%)	偏差			(%)	偏差	(%)	偏差	
前立腺	0.13	0.62	0.40	1.02	n.s.	前立腺	99.9	0.12	97.4	0.96	P < 0.05
頭頸部 胸部	-0.59	0.77	4.36	3.94	P < 0.05	頭頸部 胸部	96.8	3.16	95.0	3.36	n.s.

【考察】

Auto Alignmentの結果、EPIDによる取得画像と計画装置の照合画像との位置ずれは、いずれの症例においてもX,Y方向同じ方向にシフトしていた。EPIDの機械的なガタ、駆動時変位による影響があると思われる。ただし、シフト量は1mm以下であることから、Alignment調整ありによるArea Gamma、Average DDの解析を実施することは許容されると思われた。本研究の結果では、Alignment調整の有無において、有りの結果が良好であった。電離箱線量計とPortal Dosimetryの絶対線量相当の比較においては、頭頸部・胸部領域について両者に優位な差があったことから、電離箱線量計での線量検証を残すことが妥当と思われた。線量分布検証の比較においては、許容値が異なることもあり前立腺で有意差があったが、Portal Dosimetryでは許容値を低く設定しているのにもかかわらずPass率が95%以上であったので3%/1mmで解析を行っても問題ないと思われる。また今回の結果から、 γ 解析の許容値、Y0 解析の許容値、Y1 解析の許容値、Y2 解析の許容値、Y2 解析の許容値、Y3 解析の許容値、Y4 解析の許容値、Y5 解析の許容値、Y6 解析の許容値、Y8 Pass率の設定は重要であると考えられる。

【まとめ】

EPIDを用いたIMRTの線量検証を実施して各項目の解析を行い、今回の結果からPortal Dosimetryは、線量分布検証には十分使用可能であると考えられる。また、 γ 解析の許容値をPortal Dosimetryでは3%/1mmとしていたが、今回の結果を考慮して最適な許容値を設定することが重要である。